The herpes viruses are very important enveloped DNA viruses that cause disease in all vertebrate species and in some invertebrates such as oysters. Some of the human ones are herpes simplex (HSV) I and II, causing facial and genital lesions, and the varicella-zoster (VSV), causing chicken pox and shingles. Each of these three actively infect nervous tissue. Primary infections are fairly mild, but the virus is not then cleared from the host; rather, viral genomes are maintained in cells in a latent phase. The virus can then reactivate, replicate again, and be infectious to others.

The herpes viruses are very important enveloped DNA viruses that cause disease in all vertebrate species and in some invertebrates such as oysters. Some of the human ones are herpes simplex (HSV) I and II, causing facial and genital lesions, and the varicella-zoster (VSV), causing chicken pox and shingles. Each of these three actively infect nervous tissue. Primary infections are fairly mild, but the virus is not then cleared from the host; rather, viral genomes are maintained in cells in a latent phase. The virus can then reactivate, replicate again, and be infectious to others.


1) If scientists are trying to use what they know about HSV to devise a means of protecting other people from being infected, which of the following would have the best chance of lowering the number of new cases of infection?


A) vaccination of all persons with preexisting cases
B) interference with new viral replication in preexisting cases
C) treatment of the HSV lesions to shorten the breakout
D) medication that destroys surface HSV before it gets to neurons
E) education about avoiding sources of infection

Answer:  B

2) In electron micrographs of HSV infection, it can be seen that the intact virus initially reacts with cell surface proteoglycans, then with specific receptors. This is later followed by viral capsids docking with nuclear pores. Afterward, the capsids go from being full to being "empty." Which of the following best fits these observations?


A) Viral capsids are needed for the cell to become infected; only the capsids enter the nucleus.
B) The viral envelope is not required for infectivity, since the envelope does not enter the nucleus.
C) Only the genetic material of the virus is involved in the cell's infectivity, and is injected like the genome of a phage.
D) The viral envelope mediates entry into the cell, the capsid entry into the nuclear membrane, and the genome is all that enters the nucleus.
E) The viral capsid mediates entry into the cell, and only the genomic DNA enters the nucleus, where it may or may not replicate.

Answer:  D

3) In order to be able to remain latent in an infected live cell, HSV must be able to shut down what process?


A) DNA replication
B) transcription of viral genes
C) apoptosis of a virally infected cell
D) all immune responses
E) interaction with histones

Answer:  C